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1. INTRODUCTION

In a ship integrated power system (IPS), electricity
supplies the propulsive power as well as the service
loads thereby providing all of the energy needs
of the ship. The IPS is particularly attractive
because it can be made robust with respect to
component failures through management of power
flow, loads and energy storage devices.

A challenge is the design of a power management
system (PMS). The PMS is intended to manage
the discrete actions such as load shedding, ca-
ble switching, UPS activity, and the startup or
shutdown of prime movers. The main goals are to
ensure that power is supplied to vital loads during
failure events and to maximize the amount of
non-vital load that is supplied while maintaining
adequate voltage levels on the load buses.

1 This research was supported by the Office of Naval Re-
search Contract Number N00014-04-M-0285 and the Na-
tional Science Foundation Contract Number ECS-0400391.

In this paper we describe the design of optimal
feedback PMS. Our approach builds on the work
of (Geyer et al., 2002) that applies the frame-
work of (Bemporad and Morari, 1999) to power
systems. While interesting results are achieved
for a simple power system, as noted in (Geyer
et al., 2002), the use of piecewise affine approxi-
mations has significant limitations when applied
to the nonlinear differential-algebraic-equations
(DAE) that describe power systems.

In an earlier publication (Kwatny et al., 2006) we
introduced an approach in which we use the non-
linear DAE model and employ mixed-integer dy-
namic programming to derive an optimal feedback
control. In this paper we describe the computa-
tions in greater detail, highlighting new concepts
for improving the efficiency of the dynamic pro-
gramming computations. We illustrate the analy-
sis with an example.

Our approach emphasizes the use of logical con-
straints in formulating the optimal control prob-
lem. Logical specifications are used to define the



admissible transition behavior of the discrete sys-
tem, to incorporate saturation of the continuous
control, to characterize the algebraic constraints
of the DAE model, and in the definition of the
the cost function.

The remainder of the paper is organized as follows.
Section 2 gives the problem definition and Section
3 describes an example that is used throughout
the remainder of the paper. Section 4 briefly
describes the process of converting from logical
specifications to mixed integer inequalities, and
Section 5 describes our approach to solving the
optimization problem.

2. PROBLEM DEFINITION

2.1 Modeling

The system operates in one of m modes denoted
q1, . . . , qm. Q = {q1, . . . , qm} is the discrete state
space. The discrete time difference-algebraic equa-
tion (DAE) describing operation in mode qi is

xk+1 = fi (xk, yk, uk)
0 = gi (xk, yk, uk) i = 1, . . . ,m (1)

where x ∈ X ⊆ Rn is the system continuous state,
y ∈ Y ⊆ Rp is the vector of algebraic variables and
u ∈ U ⊆ Rl is the continuous control. Transitions
can occur only between certain modes. The set
of admissible transitions is E ⊆ Q × Q. It is
convenient to view the mode transition system
as a graph with elements of the set Q being the
nodes and the elements of E being the edges.
We assume that transitions are instantaneous and
take place at the beginning of a time interval. So,
if a system transitions from mode q1 to q2 at time
k we would write q(k) = q1, q(k+) = q2. We allow
resets. State trajectories are assumed continuous
through events, i.e., x(k) = x(k+), unless a reset
is specified.

Transitions are triggered by external events and
guards. Events are of two types; either con-
trolled – belonging to set Σs, or exogenous (occur
spontaneously)–belonging to set Σe. A guard is
a subset of the continuous state space X that
enables a transition. A transition enabled by a
guard might represent a protection device. Not
all transitions have guards and some transitions
might require simultaneous satisfaction of a guard
and the occurrence of an event.

We consider each discrete state label, q ∈ Q, and
each event, s ∈ Σs, e ∈ Σe to be logical variables
that take the values True or False. Guards also
are specified as logical conditions. In this way
the transition system can be defined by a logical
specification (formula) L.

For computational purposes it is useful to asso-
ciate with each logical variable, say α, a binary

variable or indicator function, δα, such that δα

assumes the values 1 or 0 corresponding respec-
tively to α being True or False. It is convenient to
define the discrete state vector δq = [δq1 , . . . , δqm

].
Precisely one of the elements of δq will be unity
and all others will be zero.

With the introduction of the binary variables we
can replace the set of dynamical equations (1)
with the single DAE:

x (k + 1) = f (x (k) , y (k) , δq (k) , u (k))
= δq1fq1 (x (k) , y (k) , u (k)) + · · ·

+δqmfqm (x (k) , y (k) , u (k))
0 = g (x (k) , y (k) , δq (k) , u (k))

= δq1gq1 (x (k) , y (k) , u (k)) + · · ·
+δqmgqm (x (k) , y (k) , u (k))

(2)

Remark 2.1. (Power System DAE Models). Power
systems are typically modeled by sets of semi-
explicit DAEs as given by (1) – we will drop the
explicit use of uk to simplify notation. In any
mode qi the flow defined by (1) is constrained to
the set Mi ⊂ X × Y defined by 0 = gi (xk, yk).
Ordinarily, it is assumed that Mi is a regular man-
ifold. In rare instances it is possible to explicitly
solve gi = 0 for yk(xk) and to reduce the DAE
to an ordinary differential or difference equation
(ODE). More generally, there exists a finite set of
disjoint semi-algebraic sets in X ×Y whose union
contains Mi and for which there is an explicit
characterization of yk in each set. If the system
is not too large, modern quantifier elimination
tools enable the identification of these sets and
the corresponding functions so that the algebraic
condition gi = 0 is replaced by the logical state-
ment:

∧j∈J (Lj (x, y) ⇒ y = yj (x))

where each Lj is a logical specification and J is
an index set.

We will do this in the example given below. The
advantage of this process is that we can compute
the continuous flow in any mode precisely.

2.2 The Control problem

The system is observed in operation over some
finite time horizon T that is divided into N
discrete time intervals of equal length. A control
policy is a sequence of functions

π =
{
µ0 (x0, δq0) , . . . , µN−1

(
xN−1, δq(N−1)

)}

such that [uk, δsk] = µk (xk, δqk
). Thus, µk gen-

erates the continuous control uk and the discrete
control δsk that are to be applied at time k, based
on the state (xk, δqk) observed at time k.

Consider the set of m-tuples {0, 1}m. Let ∆m

denote the subset of elements δ ∈ {0, 1}m that
satisfy δ1 + · · · + δm = 1. Denote by Π the set



of sequences of functions µk : X × ∆m → U ×
{0, 1}mS that are piecewise continuous on X.

The Optimal Feedback Control Problem is defined
as follows. For each x0 ∈ X, δq0 ∈ ∆m determine
the control policy π∗ ∈ Π that minimizes the cost

Jπ (x0, δq0) =
gN (xN , δqN )+∑N−1

k=0
gk (xk, δqk, µk (xk, δqk))

(3)

subject to the constraints (1) and the logical
specification, i.e.,

Jπ∗ (x0, δq0) ≤ Jπ (x0, δq0) ∀π ∈ Π (4)

3. EXAMPLE

3.1 System Description

A relatively simple system that is known to ex-
hibit interesting voltage stability characteristics
is a single generator feeding an aggregated load
composed of constant impedance loads and induc-
tion motors (Pal, 1993). By expanding this system
to include a vital load with a UPS, as shown in
Figure 1, we obtain one of interest to us.Motor

UPS Vital load
1,E δ

2 2,V δ

/ja n− ~-
Fig. 1. System with UPS.

The primary means for voltage control is the field
voltage. However, in the event of a transmission
line fault it may be necessary to shed load in
order to avoid a system collapse. This can be ac-
complished by dropping non-vital load in discrete
blocks and, if necessary switching the vital load
to battery supply.

We will assume that two blocks of non-vital load
can be dropped independently by opening circuit
breakers. Correspondingly, we use a load shed
parameter η ∈ {0, η1, η2} that denotes the fraction
of load dropped.

The battery is connected to the DC load bus
through a DC-DC converter. There are three
possible UPS operating modes:

(1) Battery unconnected.
(2) Battery discharging; The battery and vital

load are detached from the rest of the net-
work. The battery supplies the load through

a voltage controlled DC-DC converter set up
to keep the load voltage constant.

(3) Battery charging; In this mode the battery
is charged through a DC-DC converter oper-
ated in current controlled mode – the current
is controlled to a specified value.

The overall system transition system is shown
in Figure 2. It represents operational constraints
that we impose on the system.
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Fig. 2. Transition behavior for system with UPS.

3.2 Dynamics

3.2.1. Battery disconnected, modes q1, q2, q3 The
voltage regulated rectifier controls the voltage on
vital load bus.We assume that the rectifier is
power factor corrected so that from the AC side
of the rectifier, the vital load looks like a constant
power load with unity power fact, P = Pv, Q = 0.

Let δ1, δ2 denote the voltage angles at bus 1 and 2.
Define the relative angle θ2 = δ2−δ1. The network
equations are

Pv = aE V2 sin θ2 − c V 2
2

0 = aE V2 cos θ2 + d V 2
2

(5)

Where Pv is the power consumed by the vital
load and c− j d is the admittance of the non-vital
aggregate load.

The field voltage E is used to control the load bus
voltage V2 to its desired nominal value of 1. If we
ignore the exciter dynamics, then (5) allows the
determination of the field voltage that yields the
desired load bus voltage provided the resultant E
is within its strict limits, 0 ≤ E ≤ 2. It is always
the upper limit that is the binding constraint. This
implies two possibilities for satisfying (5): either
V2 = 1 or E = 2. These are:

V2 = 1, E =

√
(c + Pv)2 + d2

a
, 0 < Pv

(6)



E = 2,

V2 =

√
2a2 − cPv −

√
4a4 − 4a2cPv − d2P 2

v

c2 + d2
,

0 < Pv < 2a2
(√

c2 + d2 − c
)

(7)

Once the excitation system saturates there is
an upper limit to Pv, as seen in (7). This is
the voltage collapse bifurcation point. Also, these
relations are only good for Pv > 0 . When Pv = 0
we have

V2 =
a√

c2 + d2
E (8)

Equation (6) (non-saturated field) does approach
the proper limit as Pv → 0 , but the Equation (7)
(saturated field) does not. This is as it should be.

Remark 3.2. (Network Solution). As discussed in
Remark 2.1 we can express the network con-
straints in terms of the logical constraint

L0 = (V2 = 1 ⇒ E = z1) ∧ (E = 2 ⇒ V2 = z2)
(9)

where z1, z2 are defined via (6), (7), and (8).

3.2.2. Battery Charging, mode q4 The battery
model is composed of a differential equation de-
scribing the battery ’state of charge’ σ and an out-
put map that gives the battery terminal voltage
vb as a function of the state of charge.

d

dt
σ =

1
C

i, vb = f (σ) , 0 ≤ σ ≤ 1

where i is the battery charging current and C
is the battery effective capacitance. The DC-DC
converter operates in current control mode so the
battery is charged with constant current, i = ic.
While charging we have:

dσ

dt
=

ic
C

Because the AC-DC rectifier maintains constant
V3, from the AC side of the rectifier, charging
looks like an additional constant power load, Pc =
V3ic. The network supplies both the vital load
and the power to charge the battery. Thus, the
network relation is given by Equations (6) and
(7) with Pv replace by Pv + Pc.

3.2.3. Battery Discharging, modes q5, q6 The
vital loads and battery are separated from the rest
of the system and draw no power from the net-
work. Consequently the the relationship between
E and V2 is given by Equation (8). The DC-DC
converter now maintains constant voltage on bus
3, so that the battery current is i = −Pv/V3 and

dσ

dt
= − Pv

C V3

In the following study we take C = 0.5 and
Pv = 10.

3.2.4. Induction Motors If we neglect the small
stator resistance and inductance and assume a
large magnetizing inductance, the equivalent cir-
cuit for an induction motor consists of a series
rotor resistance and inductance Rr, Xr. Define the
slip s = (ω0 − ωm)/ω0 and let Pm denote the
mechanical load power. Then the motor dynamics
take the form

ṡ =
1

Imω2
0

(
Pm − V 2

s

Rrs (1− s)
R2

r + s2X2
r

)
(10)

3.2.5. Load Shedding We assume discrete load
shedding blocks and define η to represent the
fraction of load shed. Thus η can assume a finite
number of values 0 ≤ η < 1. The non-vital
load admittances, taking into account the load
shedding parameter, are:

c = (1− η) c0, c0 =
(

1
RL

+
Rrs

R2
r + s2X2

r

)
(11)

d = (1− η) d0, d0 =
(

Xrs
2

R2
r + s2X2

r

)
(12)

Equation (10) represents the aggregated motor
dynamics, and the load admittance is given by
the last two equations, (11), (12). The system
data is RL = 2, Rr = 0.25, Xr = 0.125, a =
1 (nominal) , Imω2

0 = 4.

4. LOGICAL SPECIFICATION TO IP
FORMULAS

The first step in solving the optimal control prob-
lem is to transform the logical constraints into a
set of inequalities involving binary variables and
possibly real variables, so-called IP-formulas. The
idea of formulating optimization problems using
logical constraints and then converting them to IP
formulas has a long history. This concept was used
as a means to incorporate qualitative information
in process control (Tyler and Morari, 1999), and
generally introduced into the study of hybrid sys-
tems in (Bemporad and Morari, 1999).

McKinnon and Williams (1989) suggested a se-
quence of transformations that brings a logical
specification into a set of IP-formulas. Li et al.
(2000) present a systematic algorithm for doing
this. We have modified that implementation in
order to obtain simpler and more compact IP
formulas. 2

If all of the guards are linear (set boundaries are
composed of linear segments), then the IP formu-
las form a system of linear constraints involving
the binary variables δq, δq+ , δs, respectively, the

2 A Mathematica package containing the transformation
functions and the examples contained herein is available at
http://www.pages.drexel.edu/ hgk22/Hybrid.htm



discrete state before transition, the discrete state
after transition, the exogenous events. They also
involve a set of auxiliary binary variables, d, in-
troduced during the transformation process, and
the continuous state variables, x. With x, δq, δs

given, these inequalities typically provide a unique
solution for the unknowns δq+ and d.

Example 4.3. (IP Formulas for UPS System). Four
logical constraints need to be converted to IP
formulas:

(1) the network specification, L0, Equation (9)
(2) the transition specification, L1, of Figure 2

(3) the excitation shedding specification
L2 = (V2 = 1 ∧ 0 < E < 2) ∨ (E = 2)

(4) the load shedding specification

L3 = (q+
1 ⇒ η = 0) ∧ (q+

2 ⇒ η = 0.4)∧
(q+

3 ⇒ η = 0.8)

The corresponding IP formulas are generated au-
tomatically. We don’t display them here because
of space limitations. All of the inequalities derived
from L1 involve only binary variables while some
of those derived from L0, L2 and L3 involve both
binary and real variables. The latter also contain
auxiliary binary variables di introduced during
the conversion process. All of the inequalities are
linear in all variables.

5. CONSTRUCTING THE OPTIMAL
SOLUTION

We apply Bellman’s principle of optimality: sup-
pose π∗ =

{
µ∗1, . . . , µ

∗
N−1

}
is an optimal control

policy. Then the sub-policy π∗i =
{
µ∗i , . . . , µ

∗
N−1

}
,

1 ≤ i ≤ N − 1 is optimal with respect to the cost
function (3).

Let us denote the optimal cost of the trajectory
beginning at xi, δqi as J∗i (xi, δqi). It follows from
the principle of optimality that

J∗i−1

(
xi−1, δq(i−1)

)
=

min
µi−1

{
gi−1

(
xi−1, δq(i−1), µi−1

)
+ J∗i (xi, δqi)

}

(13)
Equation (13) provides a mechanism for backward
recursive solution of the optimization problem. To
begin the backward recursion, we need to solve the
single stage problem with i = N . The end point
xN , δqN is free, so we begin at a general terminal
point

J∗N−1

(
xN−1, δq(N−1)

)
=

min
µN−1

{
gN−1

(
xN−1, δq(N−1), µN−1

)
+

gN

(
fN−1, δq+(N−1)

)
}

(14)

Once the pair µ∗N−1, J
∗
N−1 is obtained, we com-

pute µ∗N−2, J
∗
N−2. Continuing in this way we ob-

tain
J∗N−i

(
xN−i, δq(N−i)

)
=

min
µN−i

{
gN−i

(
xN−i, δq(N−i), µN−i

)
+J∗N−i+1

(
fN−i, δq+(N−i)

)
}

(15)

for 2 ≤ i ≤ N .

We need to solve (15) recursively backward, for
i = 2, . . . , N after initializing with (14). We begin
by constructing a discrete grid on the continuous
state space. The discrete space is denoted X̄. At
each iteration the optimal control and the optimal
cost are evaluated at discrete points in Q× X̄. To
continue with the next stage we need to set up an
interpolation function to cover all points in Q×X.

We exploit the fact that the system is highly
constrained and all of the constraints are linear in
binary variables. The basic approach is as follows:

(1) Before beginning the time iteration:
(a) Separate the inequalities into binary and real

sets, binary formulas contain only binary vari-
ables, real formulas can contain both binary and
real variables.

(b) For each q ∈ Q, obtain all feasible solutions
of the binary inequalities; a list of possible
solutions of pairs

(
δq+ , d

)
.

(c) Define projection X̄ → X̄P where X̄P is the
subspace of real states actually appearing in the
real equations.

(d) For each xP ∈ X̄P
(i) pre-screen the binary solutions to elimi-

nate those that do not produce solutions
to the real inequalities - typically a very
large fraction is dropped

(ii) for every feasible combination of binary
variables obtained above, solve the real
inequalities for the real variables

(e) Lift real solutions to entire X̄.
(2) For each i,

(a) For each pair (q, x) ∈ Q× X̄
(i) enumerate the values of the cost to go

using the feasible sets of binary and real
variables

(ii) select the minimum

In step 1b above the number of solutions corre-
sponding to each q can be very large because there
are numerous redundant solutions associated with
nonactive transitions. Thus, we add additional
logical constraints that specify the inactive tran-
sitions. Step 1c exploits the fact that some real
states do not appear in the real formulas. Because
a large fraction of the binary solutions do not lead
to real solutions, the pre-screening in step 1d.i is
very effective in reducing computing time. Finally,
we note that the inequalities are independent of
the stage of the dynamic programming recursion.
Thus, step 1d, which is by far the most intensive
computational element of the optimization is done
only once before the recursion step 2a begins.

Example 5.4. (Optimal Control). We seek an op-
timal control policy that minimizes the cost func-
tion

J =
∑N−1

k=0

( ‖V2 (k)− 1‖2 + r0 ‖σ − 1‖2
+r1 ‖ηL (k)‖2

)

subject to the system constraints. In the following
we take r0 = 1, r1 = 1/25.



We describe the optimal controller for a line fault
that results in a line admittance of a = 0.375.
This is a severe fault, but one that is man-
ageable. The state space includes the 7 discrete
states (modes) and two continuous states induc-
tion motor slip, s, indicative of power, and battery
state, σ, that represents the fractional battery
charge. For computational purposes, the contin-
uous state is discretized s ∈ {.1, .2, .3, .4, .5} and
σ ∈ {.25, .5, .75.1.0}, and the feedback control is
computed in terms of these 140 states. In imple-
mentation an interpolation function is used for the
continuous states. 3 The optimal solution with a
25 step horizon is computed in about 9 minutes
on laptop with a 1.1 Ghz Pentium M. It takes
only a few seconds longer for a 50 step horizon
because the most difficult computations are done
only once.

Figures 3, 4 and 5 illustrate a particular feedback
trajectory in which the initial battery state of
charge is 0.1 and the initial slip is 0.
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Fig. 3. Because of the low battery charge an initial
switch into charging mode 4 occurs before
load is dropped, modes 2 and 3.
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Fig. 4. The battery initially charges, but increas-
ing slip, and hence electrical power, eventu-
ally requires load shedding.

6. CONCLUSIONS

We have described an approach to designing opti-
mal feedback reconfiguration strategies for a class
of power systems. The essential feature of our ap-
proach is the use of logical specifications to charac-
terize various system constraints. Our approach to

3 Because of space limitations we omit simulations. In our
work we simulate in SIMULINK for which the controller
table data structure is automatically generated.
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Fig. 5. After about 1 second the excitation satu-
rates and load bus voltage drops. Load volt-
age regulation is re-established following load
shedding.

solving the mixed integer dynamic programming
problem that results is described. An example is
given that illustrates the problem of optimal load
shedding as a means of responding to line faults.
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